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Abstract 

Background  This study investigates the effectiveness of new-generation mosquito nets, like Olyset® Plus 
and PermaNet® 3.0, and dual-action nets such as Interceptor® G2, against pyrethroid-resistant Anopheles gambiae 
mosquitoes following the 2023 mass distribution of long-lasting insecticidal nets in Benin.

Methods  We tested wild mosquito populations from six communes in Benin against various pyrethroid (permethrin 
0.75%, alphacypermethrin 0.05%, and deltamethrin 0.05%) using WHO tube tests. Additionally, we exposed mosqui‑
toes to chlorfenapyr 100 µg/ml using the CDC bottle bioassay method. A subset of mosquitoes underwent biochemi‑
cal and PCR tests to check the overexpression of metabolic enzymes and the Kdr L1014F mutation. We evaluated 
the effectiveness of Olyset® Plus, PermaNet® 3.0, and Interceptor® G2 nets using cone and tunnel tests on both labo‑
ratory and field populations of An. gambiae.

Results  Overall, the highest mortality rate was 60% with pyrethroid and 98 to100% with chlorfenapyr. In cone 
tests, all three types of nets induced mortality rates above 80% in the susceptible laboratory strain of An. gambiae. 
Notably, Olyset® Plus showed the highest mortality rates for pyrethroid-resistant mosquitoes in cone tests, ranging 
from 81.03% (95% CI: 68.59–90.13) in Djougou to 96.08% (95% CI: 86.54–99.52) in Akpro-Missérété. PermaNet® 3.0 had 
variable rates, from 42.5% (95% CI: 27.04–59.11) in Djougou to 58.54% (95% CI: 42.11–73.68) in Porto-Novo. However, 
revealed good results for Interceptor® G2, with 94% (95% CI: 87.40–97.77) mortality and 89.09% blood sampling inhi‑
bition in local populations of An. gambiae. In comparison, Interceptor® had lower rates of 17% (95% CI: 10.23–25.82) 
and 60%, respectively.
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Introduction
Indoor residual spraying (IRS) and long-lasting insec-
ticidal nets (LLINs) are the two primary vector control 
tools recommended by the World Health Organization 
(WHO) for the management of malaria vectors. LLINs 
are extensively used in Africa as a preventive measure 
against malaria infection [1]. In 2021, the WHO esti-
mated that 68% of the population in sub-Saharan Africa 
had access to at least one LLIN, marking a substantial 
increase from only 2% in 2000 [2]. This widespread 
use of LLINs has significantly reduced the burden of 
malaria in many sub-Saharan African countries [3, 4]. 
Notably, 69% of the 663 million cases of malaria averted 
in sub-Saharan Africa between 2001 and 2015 were 
attributed to LLINs [5].

Despite these positive outcomes, the rise of pyre-
throid resistance, particularly in Benin, poses a serious 
threat to sustaining these achievements [6, 7]. Stud-
ies conducted in Benin attribute insecticide resistance 
to the overexpression of detoxification enzymes [8, 9], 
and mutations in specific genes, including kdr L1014F, 
kdr N1575Y, and Ace-1 G119S, found in populations of 
An. gambiae s.l. [10–12]. Given the context of multiple 
resistance mechanisms, there is a need to explore new 
tools for improved vector control.

An early response to insecticide resistance was the 
development of LLINs incorporating a pyrethroid and 
a synergist, piperonyl butoxide (PBO), designed to 
restore pyrethroid toxicity in resistant mosquitoes by 
inhibiting cytochrome P450 mono-oxygenase enzymes 
[13]. Two types of these LLINs, namely Olyset® Plus 
and PermaNet® 3.0, have been developed and pre-
qualified by the WHO. Randomized controlled trials 
have demonstrated the superior performance of LLINs 
combining a pyrethroid and PBO compared to stand-
ard LLINs in Tanzania, Togo, and Burkina Faso [14, 
15]. However, the effectiveness of these ITNs in a given 
area depends on the extent to which mono-oxygenase 
enzymes are involved in vector populations. In Benin, 
phase I evaluations revealed PermaNet® 3.0LLINs 
induced mortalities exceeding 75% in local popula-
tions of Anopheles mosquitoes carrying several resist-
ance mechanisms (kdr + detoxification enzymes) [16]. 
However, in experimental cases, Ngofur et  al. [17] 
showed that Olyset® Plus outperformed PermaNet® 
3.0in improving mosquito mortality compared to a 

standard pyrethroid-based net after multiple standard-
ized washings.

To address target-modifying resistance observed with 
pyrethroids, duel-active impregnated nets were devel-
oped, featuring both a pyrethroid and an insecticide with 
a different mode of action, such as pyriproxyfen (PPF) 
or chlorfenapyr. PPF acts as an insect growth regulator, 
interfering with the metamorphosis of mosquito imagi-
nal stages, while chlorfenapyr disrupts oxidative phos-
phorylation in insect mitochondria [18–20]. Recently, 
LLINs incorporating both alphacypermethrin and chlo-
rfenapyr, known as Interceptor G2, were recommended 
by the WHO following successful randomized controlled 
trials in Tanzania [21] and Benin [22].

In Benin, the introduction of new-generation nets 
(Olyset® Plus: PBO + permethrin, PermaNet® 3.0: 
PBO + deltamethrin, and Interceptor® G2 LLINs: chlor-
fenapyr + alphacypermethrin) in June 2023, represents a 
potential solution for overcoming and managing vector 
resistance. However, a previous study indicated that the 
addition of the PBO synergist did not fully restore vec-
tor susceptibility to pyrethroids [23]. However, a previous 
study indicated that the addition of the PBO synergist did 
not fully restore vector susceptibility to pyrethroids [23], 
even as the country plans to deploy PBO LLINs. Addi-
tionally, very few Phase I studies have assessed the bioef-
ficacy of dual active-ingredient LLINs like Interceptor G2 
on vector populations in Benin’s various agro-ecological 
zones.

The current study undertaken in April 2023 aims to 
provide crucial information on the efficacy of brand new 
mosquito nets of which PBO LLIN and Interceptor G2 
against different populations of An. gambiae s.l. in Phase 
I. This data aims to assist Benin National Malaria Con-
trol Program in making informed decisions regarding 
the selection of beneficiary areas for the different types 
of nets.

Materials and methods
Study area
The study was carried out in the departments of Ouémé 
(communes of Akpro-Missérété and Porto-Novo), Atlan-
tique (commune of Allada), Zou (commune of Bohi-
con), Mono (commune of Lokossa) (Fig.  1). These five 
communes have a subequatorial climate with two rainy 
seasons (April to June, and September to November) 

Conclusion  These results suggest that tunnel tests are effective for evaluating dual-active ingredient nets. Addition‑
ally, Interceptor® G2 and PBO nets like Olyset® Plus could be considered as alternatives against pyrethroid-resistant 
mosquitoes.
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and two dry seasons (July to August, and December to 
March). The annual rainfall ranges between 1200 and 
1300  mm and the humidity is about 75%. All the com-
munes feature rivers, marshes, swamps and lowlands 

which fostering activities such as market gardening and 
fish farming.

Additionally, the commune of Djougou, situated in the 
Donga department, was included in the survey. Djougou 

Fig. 1  Study area
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exhibits a Sudano-Guinean climate marked by a single 
rainy season from April to October and a sole dry season 
from October to April. The annual rainfall in Djougou 
varies between 900 and 1100 mm, and agriculture stands 
as the predominant activity in this region.

The selection of these study communes was deliberate, 
driven by their elevated malaria prevalence and the prev-
alent vector resistance to pyrethroids [24–26]. Moreover, 
the extensive use of insecticides in these areas is remark-
able, primarily for safeguarding crops against pests.

Larvae collection, rearing and identification
Larvae and pupae of Anopheles mosquitoes were meticu-
lously gathered from identified positive breeding sites 
in both central and peripheral areas of each commune, 
employing a combination of dippers, ladles, pipettes, and 
larval containers. Subsequently, these specimens were 
transported to the insectary at the Centre de Recherche 
Entomologique de Cotonou (CREC) for further examina-
tion. Within the controlled environment of the insectary, 
the larvae and pupae were reared at a temperature of 
26 °C ± 1 °C and a relative humidity of 80% until reaching 
adulthood. Morphological identification exclusively uti-
lized the Coetzee taxonomic key [27], focusing solely on 
members of the An. gambiae s.l. species for subsequent 
tests.

WHO susceptibility tube tests
The susceptibility status of An. gambiae s.l. populations 
to pyrethroid insecticides was evaluated through WHO 
tube tests. Batches of 20–25 unfed female mosquitoes, 
aged 2–5 days, were exposed to papers treated with del-
tamethrin 0.05%, permethrin 0.75%, and alpha-cyper-
methrin 0.05% for a duration of 60  min. Concurrently, 
control batches of 20–25 mosquitoes were exposed to 
untreated papers. Throughout the exposure period, the 
number of mosquitoes knocked down by the insecticide 
was recorded at 15-min intervals. Following exposure, 
the mosquitoes were transferred to observation tubes, 
where they were provided with a 10% sugar solution 
and maintained at a temperature of 27  °C ± 2  °C with a 
humidity level of 75% ± 10% for 24 h. The mortality rate 
was determined 24 h post-exposure [28].

CDC bottle bioassays
The susceptibility of wild populations of An. gambiae s.l. 
to chlorfenapyr was determined utilizing the CDC bot-
tle bioassay. To conduct this assay, 250 ml glass Wheaton 
bottles were coated with 1  ml of chlorfenapyr (100  μg/
ml), while a bottle coated with 1 ml of acetone served as 
a control. Batches of 20–25 mosquitoes were introduced 
into the coated bottles for a 60-min exposure period, dur-
ing which the number of knocked-down mosquitoes was 

recorded every 15 min. Subsequent to the exposure, the 
mosquitoes were gently transferred to observation cups 
and provided with a 10% sugar solution. Immediate mor-
tality was recorded after 1  h of exposure, and delayed 
mortalities were subsequently documented at 24, 48, 
and 72 h post-exposure. Mosquitoes that expired imme-
diately were preserved in RNA later at − 80 °C, whereas 
those succumbing after 24-, 48- and 72-h post-exposure 
were preserved in silica gel [29].

Molecular and biochemical assays
Dead and live mosquitoes from the WHO susceptibil-
ity tube tests underwent PCR analysis to ascertain the 
molecular species within the An. gambiae complex [30] 
and to detect the presence of the Kdr L1014F mutation 
[31].

For biochemical analyses, thirty unexposed female An. 
gambiae s.l., 2 to 5 days old, from each commune under-
went biochemical analyses. These analyses aimed to 
compare the expression levels of detoxification enzymes, 
including mixed function oxidases, non-specific ester-
ases, and glutathione S-transferases, across diverse field 
populations of An. gambiae s.l. and the reference suscep-
tible strain (An. gambiae Kisumu), in accordance with the 
protocol described by Hemingway et al. [32].

Description of tested mosquito nets
The three types of new-generation nets include:

–	 Olyset® Plus: Manufactured by Sumitomo Chemi-
cals, Japan, this polyethylene LLIN incorporates 2% 
permethrin (800 mg permethrin ai/m2), and 1% PBO 
(400 mg PBO ai/m2).

–	 PermaNet® 3.0: Produced by Vestergaard Frandsen 
SA, Denmark this LLIN features a polyethylene roof 
coated with 2.8  g/kg ± 25% deltamethrin and 4.0  g/
kg ± 25% PBO. Its polyester sides are coated with 
2.8 g/kg ± 25% deltamethrin.

–	 Interceptor® G2: Manufactured by BASF SE, Ludwig-
shafen, Germany, this polyester LLIN is coated with a 
mixture of 200 mg/m2 chlorfenapyr and 100 mg/m2 
alpha-cypermethrin.

In comparison, the standard pyrethroid-only net used 
as a control is Interceptor®, a polyester netting manufac-
tured by BASF SE, Ludwigshafen, Germany, incorporat-
ing 200 mg/m2 of alpha-cypermethrin.

WHO cone bioassay
A susceptible laboratory strain (An. gambiae Kisumu), 
and field populations of An. gambiae s.l. were utilized to 
assess the bio-efficacy of new-generation nets according 
to the WHO cone test protocol [33].
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Nets that were brand new, and never used in the com-
munity (Olyset® Plus, Interceptor® G2 and PermaNet® 
3.0) were tested in this study. Five pieces of net, measur-
ing 30  cm × 30  cm, including a piece from the roof and 
a piece from each of the four lateral sides were sampled 
on Olyset® Plus (mixture PBO and Permethrin) and 
Interceptor® G2 (mixture Chlorfenapyr and alphacyper-
methrin). For PermaNet® 3.0, four pieces of netting were 
sampled, two from the roof and two from the sides (one 
from the length and one from the width), due to the dif-
ference in insecticide types between the roof (PBO + Del-
tamethrin) and the lateral sides (Deltamethrin). All net 
pieces were individually labelled, securely wrapped in 
foil, and stored in a refrigerator before testing. During 
the tests, each net piece had two standard cones affixed 
using a plastic plate. We introduced five unfed female An. 
gambiae s.l., aged 2 to 5 days, into each cone for a 3-min 
exposure. Post-exposure, mosquitoes were gently trans-
ferred into cups, provided with a 10% sweetened juice, 
and observed for 24 h at room temperature (27 °C ± 2 °C) 
with a relative humidity of 75% ± 10%. The number of 
knocked-down mosquitoes was recorded every 5  min 
during and one hour after exposure. Mortality rates were 
determined 24 h post-exposure.

For Olyset® Plus and Interceptor® G2 nets, a total of 
50 mosquitoes were tested per net, while 40 were tested 
for PermaNet® 3.0. This comprehensive testing approach 
aimed to provide a thorough assessment of the nets’ 
effectiveness against An. gambiae s.l. populations.

WHO tunnel test
The bio-efficacy assessment of Interceptor® G2 and 
Interceptor® LLINs also included tunnel tests, with an 
untreated mosquito net serving as a negative control. 
In this experiment, unfed female An. gambiae s.l., aged 
7 days, were released into a tunnel with two square sides 
(25  cm × 25  cm) and a length of 60  cm. The tunnel was 
partitioned into two sections: section A, constituting 2/3 
of the tunnel where mosquito releases occurred, and sec-
tion B, encompassing the remaining portion of the tun-
nel where an immobilized bait (a guinea pig) was placed. 
At the end of section B, a 25  cm side square cage cov-
ered with polyester netting was installed. The netting to 
be tested was positioned just after section A. The area 
of the net accessible to mosquitoes measured 400 cm2 
(20  cm × 20  cm), featuring nine holes of 1  cm in diam-
eter. In the evening, one hundred unfed female mos-
quitoes, held without food for a minimum of 6 h before 
the test, were introduced into the cage through the end 
of section A. Three separate tunnels were employed for 
the Interceptor® G2, Interceptor® (positive control), 
and the untreated net (negative control). Following 12 h 
of exposure, mosquitoes were carefully removed from 

each section of the tunnel in the early morning using a 
mechanical aspirator and placed in veiled and labeled 
cups. Mosquitoes in these cups were provided with a 
10% sugar solution and observed for 72  h to determine 
the delayed mortality. The number of live, dead, unfed or 
blood-fed mosquitoes in each section of the tunnel was 
recorded to determine the entry, mortality, and blood-
feeding inhibition rates. The tests were conducted in total 
darkness overnight, maintaining a constant temperature 
of 27 ± 2 °C and a relative humidity of 75% ± 10% [34].

Data analysis
The mortality rates observed 24 h after exposure to vari-
ous insecticides were interpreted in accordance with 
WHO criteria [28]:

–	 Mortality rate between 98 and 100%: Susceptible 
mosquito population

–	 Mortality rate ≥ 90% and < 98%: Possible resistance in 
the mosquito population

–	 Mortality rate < 90%: Insecticide-resistant mosquito 
population.

The allelic frequencies of the kdr L1014F mutation were 
determined by the following formula: F = (2nRR + nRS) / 
(2(nRR + nRS + nSS)).

n = number of genotypes, RR: homozygous resistant, 
RS: Heterozygous, SS: homozygous susceptible.

The exact binomial test was used to calculate confi-
dence intervals for mortality rates and allelic frequencies 
of kdr L1014F mutations. To assess the resistance activ-
ity of metabolic enzymes, their expression level was com-
pared between field populations of An. gambiae s.l. and 
the laboratory susceptible strain, An. gambiae (Kisumu 
strain). GraphPad Prism8 software was used to draw the 
graphs and calculate the p-values.

The Mann–Whitney U test enabled comparison of the 
activity of enzymes, between the field mosquito popula-
tions and the laboratory susceptible strain (An. gambiae 
Kisumu). Statistical analyses were conducted using R 
3.3.2 software [35].

Data on the bioefficacy of LLINs tested with the labora-
tory susceptible strain An. gambiae (Kisumu strain) was 
analyzed according to WHO criteria:

–	 Minimal efficacy: KD60 ≥ 75% or mortality 
rate ≥ 50%.

–	 Optimal efficacy: knock down rate at 60  min 
(KD60) ≥ 95% or mortality rate ≥ 80%.

Furthermore, mortality rates displayed by LLINs using 
wild populations of An. gambiae s.l. was also presented.



Page 6 of 14Zoungbédji et al. Tropical Medicine and Health           (2024) 52:34 

The indicators evaluated through the tunnel tests are as 
follows:

–	 Blood-feeding rate (%) = (A/B) × 100, where A is 
the number of blood-fed mosquitoes collected in 
the tunnel, and B is the total number of mosquitoes 
exposed to the insecticide-incorporated net.

–	 Blood-feeding inhibition rate (%) = ((C − D))/C × 100, 
where C and D are the blood feeding rates obtained 
with the untreated, and insecticide-treated nets, 
respectively.

–	 Immediate mortality (%) = (E/F) × 100, where E is the 
number of dead mosquitoes collected in the tunnel 
just after the 12-h-exposure time, and F is the total 
number of mosquitoes exposed to the insecticide-
incorporated net.

–	 24-h mortality (%) = (G/H) × 100, where G is the 
number of dead mosquitoes 24 h post-exposure, and 
H, the total number of mosquitoes exposed to the 
insecticide-treated net

–	 72-h mortality (%) = (I/J) × 100, where I is the number 
of dead mosquitoes within 72 h, and J, the total num-
ber of mosquitoes exposed to the insecticide-treated 
net.

Results
Susceptibility of An. gambiae s.l. to pyrethroids (WHO 
susceptibility tube tests)
Overall, the populations of An. gambiae s.l. from Akpro-
Missérété, Porto-Novo, Bohicon, Lokossa, Allada, and 

Djougou showed high pyrethroid resistance. The mortal-
ity rates were consistently below 60% for all pyrethroid 
insecticides tested, regardless of the commune. Specifi-
cally, the rates ranged from 9.89% (95% CI: 4.62–17.95) 
to 27.14% (95% CI: 17.20–39.10) for permethrin, 18.95% 
(95% CI: 11.63–28.28) to 53.13% (95% CI: 42.66–63.39) 
for alphacypermethrin, and 27.78% (95% CI: 18.95–
38.22) to 55.81% (95% CI: 44.70–66.52) for deltamethrin 
(Fig. 2).

Frequency of kdr L1014F mutation in An. gambiae s.l.
Across all studied populations of An. gambiae s.l. (Akpro-
Missérété, Porto-Novo, Bohicon, Lokossa, Allada, and 
Djougou), the prevalence of the kdr L1014F mutation was 
high. The average frequency was approximately 86% (95% 
CI: 83–88) across the entire study area. Akpro-Missérété 
exhibited the lowest rate at 83% (95% CI: 77–88), while 
Allada displayed the highest at 89% (95% CI: 81–94). No 
significant differences were observed in kdr frequen-
cies among the study sites or between the two species of 
the An. gambiae s.l. complex, with An. gambiae at 87% 
(95% CI: 84–90) and An. coluzzii at 84% (95% CI: 80–88) 
(Table  1). The mean difference of the kdr L1014F fre-
quency between the two molecular species was 3% (95% 
CI: 2.8–3.5).

Enzymatic activities in An. gambiae s.l.
Enzyme activity was assessed by comparing field 
populations of An. gambiae s.l. with the susceptible 
laboratory strain Kisumu. The findings revealed an 

Fig. 2  Mortality rate of An. gambiae s.l. populations after 60 min exposure to alpha-cypermethrin (0.05%), permethrin (0.75%) and deltamethrin 
(0.05%) after 24 h observation
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overexpression of glutathione-s-transferases (GST) in 
Allada, Akpro-Missérété, Lokossa, and Bohicon. Addi-
tionally, significantly elevated esterase activity was 
noted in Djougou, Porto-Novo and Bohicon as com-
pared to the Kisumu susceptible strain. The overpro-
duction of oxidases (MFOs) was specifically observed 
in Djougou (Fig. 3).

Susceptibility of An. gambiae s.l. to chlorfenapyr (CDC 
bottle bioassay)
Figure  4 depicts the mortality rates of six field popula-
tions of An. gambiae s.l. exposed to chlorfenapyr. All 
mosquito populations exhibited complete sensitivity to 
chlorfenapyr, with 100% mortality observed between 24- 
and 48-h post-exposure. No significant differences were 
noted in mortality rates at 24, 48 and 72 h after exposure 
to the insecticides. Specifically, the rates were 97% (95% 
CI: 91.48–99.38) in Akpro-Missérété, and 100% in Porto-
Novo (95% CI: 96.45–100), Allada (95% CI: 96.23–100%), 
Lokossa (95% CI: 96.61–100), Bohicon (95% CI: 96.38–
100), and Djougou (95% CI: 96.82–100) at 24  h after 
exposure, and remained at 100% for all mosquito popula-
tions at 48 h and 72 h post-exposure.

WHO cone bioassay results
Not only did Olyset® Plus and PermaNet® 3.0 nets 
exhibit optimal efficacy (mortality ≥ 80%) with the labo-
ratory-susceptible strain (An. gambiae Kisumu), but they 
also demonstrated significantly higher mortality rates 
with field populations of An. gambiae s.l. compared to 
the Interceptor® net. Similarly, Interceptor® 96% (95% CI: 
86–100) and Interceptor® G2 82% (95% CI: 68.56–91.42) 
nets displayed optimal efficacy with the susceptible strain, 
with a difference of 14% (95% CI: 0.04–27.95). However, 
the highest mortality induced by LLIN Interceptor® on 
the field population of An. gambiae s.l. after 24 h of expo-
sure was 8% (95% CI: 2–19) in Allada, and 6% (95% CI: 
1.25–16.55) in Akpro-Missérété with LLIN Interceptor® 
G2. For Olyset® Plus, the mortality rates were 100% (95% 
CI: 92.89–100) with the Kisumu strain, 96.08% (95% 
CI: 86.54–99.52) in Akpro-Missérété, 83.33% (95% CI: 
70.71–92.08) in Porto-Novo, 84.62% (95% CI: 71.92–
93.12) in Bohicon, 91.07% (95% CI: 80.38–97.04) in Loko-
ssa, 96% (95% CI: 86.29–99.51) in Allada, and 81.03% 
(95% CI: 68.59–90.13) in Djougou. With PermaNet® 3.0, 
the mortality rates were 100% (95% CI: 92.89–100) with 
Kisumu, 42.50% (95% CI: 27.04–59.11) with Akpro-Mis-
sérété, 58.54% (95% CI: 42.11–73.68) with Porto-Novo, 

Table 1  Frequency of Kdr L1014F mutations in An. gambiae s.l. populations

An Anopheles, Freq frequency, No number, %: Percentage, CI: Confidence Interval

Communes/species No. tested Genotypes Freq. 1014F (%) CI

1014F 1014F 1014L

1014F 1014L 1014L

Akpro-Missérété 99 73 19 7 83 [77–88]

 An. coluzzii 63 45 14 4 83 [75–89]

 An. gambiae 36 28 5 3 85 [74–92]

Porto-Novo 50 39 7 4 85 [76–91]

 An. coluzzii 50 39 7 4 85 [76–91]

Bohicon 50 35 15 0 85 [76–91]

 An.coluzzii 26 19 7 0 87 [74–94]

 An. gambiae 24 16 8 0 83 [70–93]

Lokossa 99 80 13 6 87 [82–92]

 An. coluzzii 50 37 8 5 82 [73–89]

 An. gambiae 49 43 5 1 93 [86–97]

Allada 50 40 9 1 89 [81–94]

 An. coluzzii 12 8 4 0 83 [63–95]

 An. gambiae 38 32 5 1 91 [82–96]

Djougou 49 38 7 4 85 [76–91]

 An. coluzzii 7 7 0 0 100 [77–100]

 An. gambiae 42 31 7 4 82 [72–90]

All area 397 305 70 22 86 [83–88]

 An. coluzzii 208 155 40 13 84 [80–88]

 An. gambiae 189 150 30 9 87 [84–90]
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50% (95% CI: 33.38–66.62) in Bohicon, 52.50% (95% CI: 
36.13–68.49) in Lokossa, 45% (95% CI: 29.26–61.51) in 
Allada, and 42.5% (95% CI: 27.04–59.11) in Djougou. No 
significant difference was observed between the mortal-
ity rates of the six An. gambiae s.l. populations exposed 
to Olyset® Plus and PermaNet® 3.0 nets, respectively. 
(Fig. 5).

WHO tunnel test results
In the tunnel test, Interceptor® G2 outperformed 
Interceptor®. Immediate mortality rates observed with 
Interceptor® G2 were 69% (95% CI: 58.97–77.87), 92.5% 
(95% CI: 84.39–97.2), and 72.5% (95% CI: 61.38–81.9) 
in Porto-Novo, Bohicon, and Allada, respectively. In 
contrast, for Interceptor®, the rates were 11% (95% CI: 

5.62–18.83), 37.5% (95% CI: 26.92–49.04), and 35% (95% 
CI: 24.67–46.48) in the same locations. A substantial dif-
ference in mortality rates of all An. gambiae s.l. popula-
tions was observed between these two nets. Twenty-four 
hours after exposure, mortality rates were significantly 
higher with Interceptor® G2, reaching 89% (95% CI: 
81.17–94.38), 100% (95% CI: 95.49–100), and 92.5% (95% 
CI: 84.39–97.20) in Porto-Novo, Bohicon, and Allada, 
respectively. In contrast, Interceptor® showed immediate 
mortality rates that did not differ significantly from those 
observed after 24 h 16% (95% CI: 9.43–24.68), 40% (95% 
CI: 29.20–51.56), and 38.75% (95% CI: 28.06–50.30), 
48 h, and 72 h (Figs. 5, 6).

The blood-feeding rate was 6% (95% CI: 2.23–12.6) 
for Interceptor® G2, 22% (95% CI: 14.33–31.39) for 

Fig. 3  Enzymatic activity of different populations of An. gambiae s.l. p < 0.05 indicates a significant difference of the expression level of an enzyme 
between a field-collected mosquito population and the Kisumu susceptible strain
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Fig. 4  Sensitivity of An. gambiae s.l. populations to chlorfenapyr

Fig. 5  Bioefficacy of new-generation nets
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Fig. 6  Mortality of An. gambiae s.l. populations after tunnel test
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Interceptor® and 55% (95% CI: 44.73–64.97) for the 
untreated net in Porto-Novo. In Bohicon, the rates were 
6.25% (95% CI: 2.06–13.99) for Interceptor® G2, 31.25% 
(95% CI: 21. 35–42.59) for Interceptor® and 65% (95% CI: 
53.52–75.33) for the untreated net. In Allada, the rates 
were 0% (95% CI: 0–4.51) for Interceptor® G2, 22.5% 
(95% CI: 13.91–33.21) for Interceptor® and 55% (95% CI: 
43.47–66.15) for the untreated net. A significant differ-
ence was observed between blood-feeding rates observed 
with Interceptor® G2 and Interceptor®.

In terms of blood-feeding inhibition rates, Interceptor® 
G2 demonstrated higher rates than Interceptor®. The 
inhibition rates were 89.09%, 90.38% and 100% for 
Interceptor® G2 compared to 60%, 51.92% and 59.09% for 
Interceptor® in Porto-Novo, Bohicon and Allada respec-
tively (Table 2).

Discussion
The current study is a phase 1 trial assessing the effective-
ness of PermaNet® 3.0, Olyset® Plus, and Interceptor® 
G2, three new generation LLINs on field populations of 
An. gambiae s.l. from Benin.

Insecticide susceptibility tests revealed that all field 
populations of An. gambiae s.l. were resistant to pyre-
throids but fully susceptible to chlorfenapyr, aligning 
with recent findings in several African countries [36]. 
The widespread pyrethroid resistance, a common issue in 
Benin, poses a challenge to mosquito control efforts rely-
ing solely on pyrethroid-based tools [23, 37, 38]. How-
ever, the observed susceptibility to chlorfenapyr suggests 
its potential as a valuable alternative due to its unique 
mode of action, disrupting ATP formation in insect mito-
chondria [20].

The Kdr L1014F mutation, a key contributor to pyre-
throid resistance, was prevalent in both An. gambiae and 
An. coluzzii, across all study areas, nearing fixation [39]. 
This could be attributed to the extensive use of pyre-
throids for various purposes, exerting high selective pres-
sure. Additionally, Djougou exhibited overexpression of 
MFOs, indicating a potential fitness cost associated with 
resistance induced by oxidases [40, 41]. Elevated GSTs 
and esterases in some study areas further highlight con-
cerns as these enzymes contribute to the expansion of 
resistance mechanisms.

Given the widespread pyrethroid resistance in malaria 
vectors, the effectiveness of pyrethroid-only LLINs in 
protecting against mosquito bites is questionable. Calls 
to design new-generation nets date back to 2007 [38], 
with trials suggesting that PBO or next-gen insecticides 
like chlorfenapyr may offer improved control of resistant 
vectors [42, 43]. PBO has shown potential to restore sus-
ceptibility to pyrethroids, while chlorfenapyr induces full 
susceptibility in pyrethroid-resistant malaria vectors.

The WHO cone tests performed with the An. gam-
biae (Kisumu strain), indicated optimal efficacy for all 
three new-generation nets and the pyrethroid-only net 
(Interceptor®), with 24-h mortality rates greater than 
80%. However, when tested with wild populations of 
An. gambiae s.l., Olyset® Plus exhibited the highest effi-
cacy, followed by PermaNet® 3.0 and Interceptor® G2. 
Similar results were reported by Ngofur et  al. [17] in 
experimental huts and Allossogbé et al. [16] with PBO 
LLINs on multidrug-resistant populations of An. gam-
biae s.l. in Benin. However, the 72-h mortality rates for 
Interceptor® G2, incorporating chlorfenapyr (a slow-
acting insecticide), were not explored, a limitation of 
this study.

Tunnel test data, assessing immediate mortality, 
blood-feeding inhibition, and mosquito entry rates, 
favored Interceptor® G2 LLINs over both Interceptor® 
LLIN and the untreated net. However, WHO cone tests 
performed with wild populations of An. gambiae s.l. 
indicated lower mortalities for Interceptor® G2, simi-
lar to Interceptor® LLIN, possibly due to the slow-act-
ing nature of chlorfenapyr. The same observation was 
previously made by Oxborough et  al. [44] who ended 
up concluding that tunnel tests remain the most reli-
able tests for evaluating the efficacy of new-generation 
LLINs. According to Oxborough et  al. [44] and Kibo-
ndo et  al. [45], the mode of action of chlorfenapyr (a 
non-neurotoxic insecticide) is compatible with the 
circadian activity rhythm of Anopheles mosquitoes, as 
they are quite active overnight but not during the day. 
This could justify the high mortality rates observed in 
the tunnel tests during which mosquitoes were exposed 
overnight to pieces of Interceptor® G2 LLINs. In fact, 
during the tunnel tests, the mosquitoes attempt to pass 
through the torn nets to seek the host, which increases 
the net-vector contact and leads to the disruptive 
action of chlorfenapyr on the respiratory tract of the 
mosquitoes.

This study establishes the efficacy of chlorfenapyr-pyre-
throid and PBO-pyrethroid LLINs on pyrethroid-resist-
ant mosquito populations in phase 1. While community 
efficacy has been demonstrated through randomized 
controlled trials [21, 22, 46–48], deployment consid-
erations should account for local vector resistance lev-
els. Alternating Interceptor® G2 LLINs and PBO LLINs 
might be a strategy to manage insecticide resistance.

The lack of PBO-pyrethroid susceptibility tests and 
bioassays with washed LLINs is acknowledged as a limi-
tation, but the study still provides valuable insights into 
the response of pyrethroid-resistant An. gambiae s.l., to 
new generation LLINs incorporating insecticides with 
different modes of action, guiding Benin’s malaria vector 
control policy.
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Conclusion
The study underscores the superior efficacy of LLINs 
incorporating piperonyl butoxide (PBO), such as 
Olyset® Plus and PermaNet® 3.0, and those with dual-
active chlorfenapyr, like Interceptor® G2, against pyre-
throid-resistant An. gambiae s.l. populations when 
compared to conventional LLINs such as Interceptor®. 
Remarkably, Olyset® Plus exhibited the highest mortal-
ity rates in cone tests, showcasing its potency in con-
trolling pyrethroid-resistant mosquitoes. Interceptor® 
G2, besides its high mortality rates in tunnel tests, dem-
onstrated superior protection by significantly inhibiting 
blood feeding. These innovative vector control tools 
present a promising option for more effective manage-
ment of pyrethroid-resistant malaria vectors in Benin. 
However, for optimal efficacy, the distribution of these 
new LLINs should be tailored to the specific resistance 
mechanisms prevalent in each agro-ecological zone. 
Priority distribution of PBO LLINs is recommended in 
areas where metabolic resistance mechanisms are dom-
inant, with the goal of enhancing protection against 
mosquito bites for local populations. This targeted 
approach will contribute to maximizing the impact of 
these novel tools in diverse malaria-endemic regions.
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